Rough Set Theory and Rule Induction Techniques for Discovery of Attribute Dependencies in Medical Information Systems

نویسندگان

  • Jerzy Stefanowski
  • Krzysztof Slowinski
چکیده

Abs t r ac t . Problems connected with applications of the rough set theory to identify the most important attributes and with induction of decision rules from the medical data set are discussed in this paper. The medical data set concerns patients with multiple injuries. The direct use of the original rough set model leads to finding too many possibilities of reducing the input data. To solve this difficulty, a new approach integrating rough set theory, rule induction and statistical techniques is introduced. First, the Chi-square test is additionally performed in order to reject non-significant attributes. Then, starting from remaining attributes we try to construct such definitions of new attributes that improve finally discovered decision rules. The results have shown that the proposed approach integrating all methods has given better results than those obtained by applying the original rough set method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)

Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...

متن کامل

Rough Set Approach for Generation of Classification Rules of Breast Cancer Data

Extensive amounts of knowledge and data stored in medical databases require the development of specialized tools for storing, accessing, analysis, and effectiveness usage of stored knowledge and data. Intelligent methods such as neural networks, fuzzy sets, decision trees, and expert systems are, slowly but steadily, applied in the medical fields. Recently, rough set theory is a new intelligent...

متن کامل

Rough Set Approaches for Discovery of Rules and Attribute Dependencies

The article presents an elementary overview of techniques for data analysis and predictive modeling from data using the rough set approach. The specific knowledge discovery-related data analysis problems discussed in the article are the discovery of functional and partial functional dependencies and the discovery of rules in data. The presentation is focused on the application of the basic roug...

متن کامل

Rule Extraction Based on Rough Fuzzy Sets in Fuzzy Information Systems

Rough fuzzy sets are an effective mathematical analysis tool to deal with vagueness and uncertainty in the area of machine learning and decision analysis. Fuzzy information systems and fuzzy objective information systems exit in many applications and knowledge reduction in them can’t be implemented by reduction methods in Pawlak information systems. Therefore, this paper provides a model for ru...

متن کامل

Learning in Relational Databases: A Rough Set Approach

Knowledge discovery in databases, or data mining, is an important direction in the development of data and knowledge-based systems. Because of the huge amount of data stored in large numbers of existing databases, and because the amount of data generated in electronic forms is growing rapidly, it is necessary to develop efficient methods to extract knowledge from databases. An attribute-oriente...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997